If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+48x-1488=0
a = 1; b = 48; c = -1488;
Δ = b2-4ac
Δ = 482-4·1·(-1488)
Δ = 8256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8256}=\sqrt{64*129}=\sqrt{64}*\sqrt{129}=8\sqrt{129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-8\sqrt{129}}{2*1}=\frac{-48-8\sqrt{129}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+8\sqrt{129}}{2*1}=\frac{-48+8\sqrt{129}}{2} $
| x^2-48x-1488=0 | | 14-5x=109 | | 2s+7=–5−2s | | 13p2-3=4209 | | 11/66=n/15 | | 4(3+2x)=79 | | 1-x=1+8x | | -4x=4-8x | | -1-4x=-3x-5 | | 8r-4-5=-2+13 | | y=1/5(10)-1 | | 5-6y2=113 | | 5/13=u/9u= | | 12-3-2=5b | | -9x+16=3x-8 | | 2x+3(5x-70)=47 | | r²+6r-27=0 | | 7z-3-1=9-8 | | 6m(m-5)=2(m=29) | | -2x-10=-9-x | | X×.5x=300000 | | n=3(2n-1)+n-1 | | 6/n=3/5 | | -3+2y=-2+4 | | X+.5x=300000 | | 5x-3-4=-2-10 | | 13=5v+8 | | 3y-1-4+8=0 | | 3y+7=29 | | -3y=4y2-1 | | 2+8=4x-4 | | 2.5=14+r |